INSULATE WITH THE CLIMATE ISOLATION SYSTEM®
Johns Manville Corbond III® closed-cell spray polyurethane foam (SPF) is the ultimate insulation solution. It barricades the indoors from the outside climate, creating thermal, air and moisture isolation. Because it will not shrink or settle, its incredible thermal and acoustical performance lasts the life of a structure. JM Corbond III SPF and its unique Lavender® color have become a symbol of uncompromising quality and standards as well as a mark of environmental commitment.

PRODUCT DESCRIPTION
JM Corbond III SPF is a premium, high-yield spray polyurethane foam building insulation. The product is generated onsite by combining an isocyanate and a polymeric resin through a dual-component proportioner. Fast, easy and adaptable, it can be applied at temperatures as low as 20°F and can achieve R-21 with only 3 inches of materials in a 2x4 stud cavity. JM Corbond III SPF is well suited for residential, commercial and industrial applications. As one of the most advanced insulation solutions, it offers climate isolation between indoor and outdoor environments.

APPLICATIONS
This system is a sprayable, rigid, closed-cell polyurethane cellular plastic foam insulation designed to insulate buildings. The sprayed product, properly installed, results in a seamless, monolithic and durable insulation fully adhered to the substrate.

- Walls – may be applied to the exterior or interior of walls in both commercial and residential buildings. May be applied between studs or in open spaces to a variety of substrates including but not limited to plywood, OSB (oriented strand board), foam sheathing with or without foil facers, rock, brick, CMU (concrete masonry units), concrete and steel. The use of primers may be evaluated to improve adhesion when needed.
- Cathedral roofs – may be applied directly to the underside of roof sheathing between the rafters to the desired thickness. Traditional venting is not necessary and should be avoided (section 806.4 of the IRC).
- Hybrid solutions – combine JM Corbond III SPF with JM Formaldehyde-free™ building insulation to create a custom insulation solution.

JM Corbond III SPF spray systems are technologically advanced, sophisticated materials and should be applied only by Morrison Hershfield or SPFA certified polyurethane spray applicators.

INSTALLATION
This spray system may be applied in passes of uniform thickness from a minimum of ½ inch to a maximum of 3 inches. For maximum yield and productivity, consider installing the material to the specified thickness in as few passes as possible using caution to never exceed 3 inches in any 30-minute time period. (For further details and exceptions please refer to the Application Guide.)

RECOMMENDED STORAGE AND TRANSPORT
Shelf Life and Storage of Raw Materials
DO NOT MIX ANY OTHER PRODUCTS INTO A SIDE OR B SIDE DRUMS. All materials should be stored in their original containers and away from heat and moisture. The shelf life is six months when stored indoors at a temperature between 50°F and 75°F. Storage below 50°F may result in compound stratification of the B and/or crystalline formation in the A component. Temperatures above 80°F may decrease shelf life. Containers should be opened carefully to allow any pressure buildup to be vented safely. Extensive venting of the B component may result in loss of blowing agent, higher-density foam and reduced yield. Temperatures below 60°F will increase the viscosity of the components making them difficult to pump. Both components are adversely affected by water and humidity.

- Freight class 55 (A or B) • Resin compounds item 46030 • NO1BN non-hazardous

Empty Drum Storage
Store empty drums on their sides with bungs in to avoid moisture entering. “Empty” is defined as product residue at the bottom of the drum no deeper than ½ inch and 8 inches or less across. Recyclers require drums to be “drip-dried” before accepting them.

SPECIFICATION COMPLIANCE
See following page for a complete list of test results.

PERFORMANCE ADVANTAGES
Unique Climate Isolation System: creates a thermal, air and moisture barricade.

Applications: JM Corbond III SPF is an excellent solution for new construction, remodels, basements, commercial buildings and many other applications.

Flexible Hybrid System: JM Spider® Custom Insulation System can be applied over JM Corbond III SPF in exposed attic spaces for increased R-value.

Air Impermeable: when tested in accordance with ASTM E283, JM Corbond III SPF is air impermeable when installed at a thickness of 1 inch or more. JM Corbond III SPF is an ABAA approved product.

Energy Efficient: reaches R-21 when installed at a thickness of 3 inches, and R-42 when installed at 6 inches.

Superior Moisture Performance: resists mold growth and is capable of meeting all current vapor retarder codes. When tested in accordance with ASTM E96, JM Corbond III SPF has a vapor permeance rating of 0.61 perms at 1½ inches thick.

Covers Completely: expands and adheres to whatever it touches, will not shrink or settle. Suitable for applications with a maximum service temperature of 180°F.

More Economical: the highest yield and R-value of any closed-cell foam at thicknesses greater than 2 inches. With up to 5,200 board feet of coverage per set, JM Corbond III has one of the lowest costs per board foot or per R in the industry.

Faster and Easier to Install: can be sprayed at 3 inches per pass, allowing for greater productivity.

Widest Application Temperature Range: can be applied at temperatures as low as 20°F.

High-Quality Raw Materials: delivers a consistent product with no ozone depleting chemicals and exceptional seasonal versatility.
SPECIFICATION COMPLIANCE
See below for a complete list of test results.

TYPICAL PHYSICAL PROPERTIES

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>TEST METHOD</th>
<th>JM CORBOND III SPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Density</td>
<td>ASTM D1622</td>
<td>2.0 lb/cu ft</td>
</tr>
<tr>
<td>Compressive Strength (1")</td>
<td>ASTM D1621</td>
<td>36 psi</td>
</tr>
<tr>
<td>Closed-cell Content</td>
<td>ASTM D622</td>
<td>>90%</td>
</tr>
<tr>
<td>R-Value (Aged R-Value) 1" thick specimen</td>
<td>ASTM C518 (Aged R-Value) 4" thick specimen</td>
<td>7.0 28</td>
</tr>
<tr>
<td>Water Absorption</td>
<td>ASTM D2842</td>
<td>0.88%</td>
</tr>
<tr>
<td>Water Vapor Transmission</td>
<td>ASTM E96</td>
<td>0.61 perms at 1.5" (Class II Vapor Retarder) 1.1 perms at 1"</td>
</tr>
<tr>
<td>Air Infiltration</td>
<td>ASTM E283-04</td>
<td>75 Pa 0.001 L/S/m² (1.57 psf) (<0.001 cfm/ft²) 300 Pa 0.001 L/S/m² (6.24 psf) (<0.001 cfm/ft²)</td>
</tr>
<tr>
<td>Air Permeance</td>
<td>ASTM E2178-03</td>
<td>75 Pa 0.000055 L/S.m².Pa 0.000117 ft³/min.m².Pa</td>
</tr>
<tr>
<td>Time to Occupancy</td>
<td>CAN/ULC-S774</td>
<td>12 Hours – Trades 24 Hours – Building Occupants</td>
</tr>
<tr>
<td>Sound Transmission Coefficient (STC)</td>
<td>ASTM E90-90 & ASTM E413-87</td>
<td>36 (STC)</td>
</tr>
<tr>
<td>Recycled Content of Side B</td>
<td></td>
<td>9% (pre- and post-consumer)</td>
</tr>
</tbody>
</table>

NOTES:
1. This information is intended only as a guide for design purposes. The values shown are obtained from sprayed laboratory samples. The test methods were performed per the test method standards.
2. Thermal performance (K-Factor and R-Value) may vary depending on age and use conditions.
3. The information herein is to assist customers in determining whether our products are suitable for their applications. We request that customers inspect and test our products before use and satisfy themselves as to content and suitability.
4. Our products are intended for sale to industrial and commercial customers for processing. Products are manufactured to meet written specifications. Nothing herein shall constitute any other warranty express or implied, including any warranty of merchantability or fitness, nor is protection from any law or patent to be inferred. The exclusive remedy for all proven claims is replacement of raw materials and in no event shall we be liable for special, incidental or consequential damages.
LIQUID COMPONENT PROPERTIES VISCOSITY

<table>
<thead>
<tr>
<th>Component</th>
<th>(cps)</th>
<th>Temp @ 75°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>250</td>
<td>75°F</td>
</tr>
<tr>
<td>B</td>
<td>650</td>
<td>75°F</td>
</tr>
</tbody>
</table>

Specific Gravity @ 75°F

A: 1.25
B: 1.21

Mixing Ratio Component A and B 1:1

Flammability Characteristics

Surface Burning Characteristics: ASTM E84

Flame Spread: <25
Smoke: <450

Note: This numerical flame spread and all other data presented are not intended to reflect the hazards presented by this or any other material in actual fire situations.

The use of polyurethane foam in interior applications on walls or ceilings presents a fire risk unless protected by an approved 15-minute thermal barrier. One example of an approved “thermal barrier” is half-inch gypsum wallboard. Consultation with building code officials before application is recommended.

Caution: Polyurethane foam may present a fire hazard if exposed to fire or excessive heat (e.g., cutting torches, soldering torches, etc.). Each firm, person or corporation engaged in the use, manufacture, production or application of polyurethane foams should carefully examine construction sequencing and end-use to determine any potential fire hazard associated with such product and to utilize appropriate precautionary and safety measures during construction.

EQUIPMENT

Follow published changeover procedures to prevent cross-contamination that could affect finished foam properties.

Proportioning equipment shall be capable of metering each component within ±2% of the metering ratio previously noted. The gun should be of the internal mix type, which provides thorough blending of the two components. The equipment shall be of the heated airless type capable of maintaining 160°F at the gun by use of both primary heaters and heated hoses. The use of 2:1 transfer pumps is recommended for supplying the liquid components to the proportioner.

Recommending Substrate Temperatures at Time of Application

<table>
<thead>
<tr>
<th>Winter</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>20°F</td>
</tr>
<tr>
<td>Maximum</td>
<td>70°F</td>
</tr>
</tbody>
</table>

For applications below 35°F, JM Corbond III technical personnel may be consulted. “Flash” passes should be avoided during cold-weather applications.

SPRAYING

This spray system may be applied in passes of uniform thickness from a minimum of ½ inch to a maximum of 3 inches. For maximum yield and productivity, the product may be applied in a single pass to the specified thickness or up to a 3 inch maximum pass. (Exceptions may exist when sheet metal or gypsum wallboard substrates are encountered. Consult Application Guide.) “Flash” passes or a thin pass of less than 1 inch on cold surfaces is to be avoided and may result in loss of adhesion of subsequent passes and yield. Thicknesses over 3 inches require multiple passes. Allow product curing and cooling time between each pass, 10 minutes per inch applied; i.e., 3 inch pass requires minimum 30 minutes. (Hot substrates may require more time, see Application Guide.) JM Corbond III SPF must not be applied in a thickness exceeding 3 inches in a single pass. If this thickness is exceeded, it will adversely affect the quality and physical properties of the finished product and the internal temperature building up within the foam may cause charring or thermal degradation. (Under certain conditions, applications exceeding this thickness may cause spontaneous combustion of the foam to occur, even hours after product was applied.)

CLEANUP LIQUIDS

Nonflammable solvents should be used for cleanup. Consult your solvent manufacturer MSDS for handling precautions.

PROTECTIVE EQUIPMENT

Spraying of polyurethane foam results in the atomizing of the components to a fine mist. Inhalation and exposure to the atomized particles must be avoided. Applicators must use personal protective equipment recommended by the Center for Polyurethanes Industry for use in high pressure spray foam application.

Please visit www.spraypolyurethane.org for additional information on appropriate PPE selection and use.
DESCRIPTION
This system is sprayable, rigid, closed-cell polyurethane cellular plastic foam insulation designed to insulate buildings. The sprayed product, properly installed, results in a seamless, monolithic and durable insulation fully adhered to the substrate. JM Corbond III SPF spray systems are technologically advanced, sophisticated materials and should be applied only by experienced contractors certified by Morrison Hershfield or SPF.A.

WALLS
JM Corbond III SPF may be applied to the exterior or interior of walls in both commercial and residential buildings. May be applied between studs or in open spaces to a variety of substrates including but not limited to plywood, OSB (oriented strand board), foam sheathing with or without foil facers, rock, brick, CMU (concrete masonry units), concrete and steel. The use of primers may be evaluated to improve adhesion when needed.

CATHEDRAL ROOFS
JM Corbond III SPF may be applied directly to the underside of roof sheathing between the rafters to the desired thickness. Traditional venting is not necessary and should be avoided (section 806.4 of the IRC).

VAPOR RETARDERS
Typically, no additional vapor retarder needs be installed over a cavity where JM Corbond III SPF has been installed greater than ½ inches. JM Corbond III SPF’s low water-vapor permeance and excellent sealing characteristics allow it to function as its own vapor retarder. (See Physical Properties.) The elimination of a second vapor retarder will avoid the creation of what is commonly known as a water vapor “trap.” The use of JM Corbond III SPF in conjunction with other insulation products or in special environments such as freezers, swimming pools or other special environments may require specific technical attention to vapor retarders. Please consult JM Corbond III SPF technical personnel.

CLEARANCES TO HEAT SOURCES
A minimum of 3 inches of clearance is required between JM Corbond III SPF and combustion appliance flues, fireplace flues, recessed can lights, including IC-rated fixtures, heat lamps and other heat-producing sources.

COMBUSTION AIR TO COMBUSTION APPLIANCES
Modern construction techniques of house tightening require that outside air inlets be provided to deliver combustion air to natural gas, propane or oil-fired appliances such as furnaces, boilers, water heaters, space heaters, etc., including gas or wood-burning fireplaces. Backdraft dampers or positive pressure venting may be needed on combustion appliance vents to prevent negative air pressures developed by bath or kitchen vent fans from backdrafting combustion effluent into the building interior.

FIRE, THERMAL BARRIER AND IGNITION BARRIER
WARNING: POLYURETHANE FOAMS WILL BURN WHEN EXPOSED TO FIRE
The use of polyurethane foam in interior applications on walls or ceilings may present a fire risk unless protected by an approved 15-minute thermal barrier. One example of an approved “thermal barrier” is ½ inch gypsum wallboard. See section 316.4 of the IRC or section 2603.4 of the IBC for further information on thermal barriers. Alternative solutions to prescribed thermal barriers are available as tested in accordance with NFPA 286. Please consult a Johns Manville representative for further information.

Consulting with building code officials before application is recommended. In attics and crawlspaces that are entered only for service of utilities, model building codes require covering of foam plastics with an ignition barrier. In attics and crawlspaces that are entered only for service of utilities, model building codes require covering of foam plastics with an ignition barrier. Feralmetallic substrates (especially mild steel) may be sand-blasted for increased adhesion in accordance with SSPC-SP6. Sand-blasted surfaces should be immediately primed with an epoxymide primer as recommended by the primer manufacturer. Galvanized and stainless steel, and aluminum substrates may be treated with an appropriate wash primer or adhesive prior to application of JM Corbond III SPF. Consult your primer manufacturer and JM for a specific recommendation. Acid wash or other pre-wash may also be needed.

DRIWWAL SUBSTRATES
Drywall substrates to which JM Corbond III SPF is to be applied in thicknesses greater than 1½ inches require a first pass thickness at and not to exceed 1½ inches with an appropriate cure time before full thickness pass is applied. Lift thicknesses exceeding 1½ inches to drywall may deform the drywall. Drywall requires no priming. Similar precautions may apply to pre-engineered metal buildings.

SUBSTRATE TEMPERATURE AND MOISTURE
This spray system is provided in different reactivity profiles to meet varying substrate temperatures as noted in Processing Characteristics. Substrates over 90ºF, such as decks of cathedral roofs with sunshine above, require longer than minimum cooling time between passes. Flash passes at cold substrates are to be avoided. JM Corbond III SPF technical personnel should be consulted in all cases where application conditions are marginal. Moisture in the form of rain, dew, frost or other sources can seriously affect the adhesion of urethane foam to the substrate or to itself. During application water reacts with the mixed foam components, seriously affecting the foam’s physical properties.

INDOOR APPLICATION PRECAUTIONS
All personnel in the spray area must be equipped with a fresh-air-supplied face mask or hood. Applicators must use personal protective equipment recommended by the Center for Polyurethanes Industry for use in high pressure spray foam application. Additional precautions include, but are not limited to:

a. Post warning signs at all work area entrances. (Available from JM at no charge.)

b. No welding, smoking or open flame.

c. Seal off the work area from adjacent rooms and ventilation ducts.

d. Mask areas required to prevent overspray such as windows, doors, tubs and showers, etc.

e. Restrict access of nonapplication personnel.

f. Provide ventilation as needed.

g. Provide breathing and eye protection to both workers and spectators.

OUTDOOR APPLICATION PRECAUTIONS
All personnel in the spray area must be equipped with a fresh-air-supplied face mask or hood. Applicators must use personal protective equipment recommended by the Center for Polyurethanes Industry for use in high pressure spray foam application. The area surrounding the spray operation should be protected from overspray and exposure of individuals not involved in the spray operations. Additional precautions include, but are not limited to:

a. Post warning signs a minimum of 100 feet from all work areas.

b. No welding, smoking or open flame.

c. Close all air-intake vents on air-handling equipment on the building.

d. Provide breathing and eye protection for spectators.

e. Move vehicles out of area.

f. Do not apply when the wind velocity is greater than 10 mph to avoid overspraying of perimeter areas.

CLIMATIC CONDITIONS
Cold temperatures and high wind speeds retard the exothermic reaction of foam and can lead to poor adhesion, increased density and loss of yield, as well as thermal shock. Avoid moisture in the form of rain, dew, frost or other sources, which can seriously affect the adhesion of JM Corbond III SPF to the substrate or to itself.
Closed-cell Spray Polyurethane Foam
IAPMO ES #0146

PRODUCT DATA SHEET

PROCESS SAFETY, HEALTH AND TOXICITY INFORMATION

INHALATION
Symptoms of vapor inhalation are characterized by coughing, tightness in the chest and shortness of breath. Excessive exposure can produce serious, possibly irreversible lung damage. Smoking in the area of application increases the risk of pulmonary injury and must be prohibited. High concentrations of isocyanate may cause symptoms and problems to appear immediately. However, chronic exposure may also lead to the same symptoms and problems. IF BREATHING HAS STOPPED, ARTIFICIAL RESPIRATION MUST BE PROMPTLY APPLIED.

If breathing is short, oxygen (if available) should be administered by trained medical personnel. OBTAIN MEDICAL ATTENTION IMMEDIATELY.

APPLICATIONS
See the A&B component SDS for more complete raw material handling information.

CLEANUP
Nonflammable solvents should be used for cleanup. Consult your solvent manufacturer for handling precautions.

INCOMPATIBLE MATERIALS
The isocyanate component (A) is incompatible with strong bases, tertiary amines or water. These materials may cause rapid, spontaneous polymerization with subsequent generation of heat and gas.

DECONTAMINATION OF SPILLS
In the event of a major isocyanate (A) spill, the area should be immediately evacuated. Only personnel equipped with appropriate respiratory and eye protection equipment should remain. If the spill occurs indoors, the area should be ventilated and leaking containers should be taken outdoors and the remaining isocyanate transferred to other containers.

The spill should be covered with sawdust, ekoperl, vermiculite, fuller’s earth or other oil-absorbing material and should then be treated with a dilute solution of ammonium hydroxide/detergent. The neutralized material should be swept up and placed in a suitable container. The material should then be disposed of by a standard method consistent with good industrial practice and in accordance with environmental protection regulations in your area. Where permissible, sanitary landfill disposal is recommended.

PHYSICAL EXAMINATIONS OF PERSONNEL
All personnel to be employed in the spraying of these materials should have a complete physical examination prior to employment. Periodic checkups are recommended if the personnel continue to spray these materials. Personnel with the following conditions should avoid the spraying of these components:

- Asthma or chronic bronchitis
- Chronic respiratory disorders
- Sensitization to chemical substances including polymeric isocyanates

DERMAL EXPOSURE
If a major splash or spill of the raw material (A) or (B) component comes in contact with the skin, the affected area should immediately be washed with generous amounts of water from a safety shower or other water source. Contaminated clothing should be removed and the skin wiped with a clean dry cloth to remove residual material. The affected area should then be wiped with a 70% solution of rubbing alcohol (isopropyl) followed by repeated washing with soap and water. If a rash develops, a physician should be consulted immediately.

EYE EXPOSURE
Splashes of either component into the eyes should be flushed immediately with generous amounts of water for at least 15 minutes. CONSULT TRAINED MEDICAL PERSONNEL IMMEDIATELY.